Обучающие курсы:

Обучение профессии "Разработчик C#" + стажировка в Mail.ru
Обучение профессии "Разработчик Python" + трудоустройство
Обучение профессии "Веб-разработчик" + стажировка в Mail.ru


Главная страница
Библиотека (скачать книги)
Скачать софт
Введение в программирование
Стандарты для C++
Уроки по C#
Уроки по Python
HTML
Веб-дизайн
Ассемблер в среде Windows
ActiveX
Javascript
Общее о Линукс
Линукс - подробно
Линукс - новое
Delphi
Паскаль для начинающих
Турбопаскаль
Новости
Партнеры
Наши предложения
Архив новостей







12. Кодирование параллельных вычислений

Резюме

Если ваше приложение использует несколько потоков или процессов, следует минимизировать количество совместно используемых объектов, где это только можно (см. рекомендацию 10), и аккуратно работать с оставшимися.

Обсуждение

Работа с потоками — отдельная большая тема. Данная рекомендация оказалась в книге, потому что эта тема очень важна и требует рассмотрения. К сожалению, одна рекомендация не в силах сделать это полно и корректно, поэтому мы только резюмируем несколько наиболее важных положений и посоветуем обратиться к указанным ниже ссылкам за дополнительной информацией. Среди наиболее важных вопросов, касающихся параллельных вычислений, такие как избежание взаимоблокировок (deadlock), неустойчивых взаимоблокировок (livelock) и условий гонки (race conditions).

Стандарт C++ ничего не говорит о потоках. Тем не менее, C++ постоянно и широко применяется для написания кода с интенсивным использованием многопоточности. Если в вашем приложении потоки совместно используют данные, на это следует обратить особое внимание.

  • Ознакомьтесь с документацией по целевой платформе на предмет локальных примитивов синхронизации. Обычно они охватывают диапазон от простых атомарных операций с целыми числами до межпроцессных взаимоисключений и семафоров.

  • Предпочтительно "обернуть" примитивы платформы в собственные абстракции. Это хорошая мысль, в особенности если вам требуется межплатформенная переносимость. Вы можете также воспользоваться библиотекой, которая сделает это за вас.

  • Убедитесь, что используемые вами типы можно безопасно применять в многопоточных программах. В частности, каждый тип должен как минимум

    • гарантировать независимость объектов, которые не используются совместно. Два потока могут свободно использовать различные объекты без каких-либо специальных действий со стороны вызывающего кода;

    • документировать необходимые действия со стороны вызывающего кода при использовании одного объекта в разных потоках. Многие типы требуют сериализации доступа к таким совместно используемым объектам, но есть типы, для которых это условие не является обязательным. Обычно такие типы либо спроектированы таким образом, что избегают требований блокировки, либо выполняют блокировку самостоятельно. В любом случае, вы должны быть ознакомлены с ограничениями, накладываемыми используемыми вами типами.

    Заметим, что сказанное выше применимо независимо от того, является ли тип некоторым строковым типом, контейнером STL наподобие vector или некоторым иным типом. (Мы заметили, что ряд авторов дают советы, из которых вытекает, что стандартные контейнеры представляют собой нечто отдельное. Это не так — контейнер представляет собой просто объект другого типа.) В частности, если вы хотите использовать компоненты стандартной библиотеки (например, string или контейнеры) в многопоточной программе, проконсультируйтесь сначала с документацией разработчика используемой вами стандартной библиотеки, чтобы узнать, как именно следует пользоваться ею в многопоточном приложении.

При разработке собственного типа, который предназначен для использования в многопоточной программе, вы должны сделать те же две вещи. Во-первых, вы должны гарантировать, что различные потоки могут использовать различные объекты вашего типа без использования блокировок (заметим, что обычно тип с изменяемыми статическими данными не в состоянии обеспечить такую гарантию). Во-вторых, вы должны документировать, что именно должны сделать пользователи для того, чтобы безопасно использовать один и тот же объект в разных потоках. Фундаментальный вопрос проектирования заключается в том, как распределить ответственность за корректное выполнение программы (без условий гонки и взаимоблокировок) между классом и его клиентом. Вот основные возможности.

  • Внешняя блокировка. За блокировку отвечает вызывающий код. При таком выборе код, который использует объект, должен сам выяснять, используется ли этот объект другими потоками и, если это так, отвечает за сериализацию его использования. Например, строковые типы обычно используют внешнюю блокировку (или неизменяемость — см. третью возможность).

  • Внутренняя блокировка. Каждый объект сериализует все обращения к себе, обычно путем соответствующего блокирования всех открытых функций-членов, так что пользователю не надо предпринимать никаких дополнительных действий по сериализа-ции использования объекта. Например, очереди производитель/потребитель обычно используют внутреннюю блокировку, поскольку сам смысл их существования состоит в совместном использовании разными потоками, и их интерфейсы спроектированы с использованием блокировок соответствующего уровня для отдельных вызовов функций-членов (Push, Pop). В общем случае заметим, что этот вариант применим, только если вы знаете две вещи.

    Во-первых, вы должны заранее знать о том, что объекты данного типа практически всегда будут совместно использоваться разными потоками; в противном случае вы просто разработаете бесполезную блокировку. Заметим, что большинство типов не удовлетворяют этому условию; подавляющее большинство объектов даже в программах с интенсивным использованием многопоточности не разделяются разными потоками (и это хорошо — см. рекомендацию 10).

    Во-вторых, вы должны заранее быть уверены, что блокировка на уровне функций обеспечивает корректный уровень модульности, которого достаточно для большинства вызывающий функций. В частности, интерфейс типа должен быть спроектирован в пользу самодостаточных операций с невысокой степенью детализации. Если вызывающий код должен блокировать несколько операций, а не одну, то такой способ неприменим. В этом случае отдельные функции могут быть собраны в блокируемый модуль большего масштаба, работа с которым выполняется при помощи дополнительной (внешней) блокировки. Например, рассмотрим тип, который возвращает итератор, который может стать недействительным перед тем, как вы используете его, или предоставляет алгоритм наподобие find, возвращающий верный ответ, который становится неверным до того, как вы им воспользуетесь, или пользователь напишет код if(c.empty()) c.push_back(x); . В таких случаях вызывающая функция должна выполнить внешнюю блокировку на время выполнения всех отдельных вызовов функций-членов, так что отдельные блокировки для каждой функции-члена оказываются ненужной расточительностью.

    Итак, внутренняя блокировка связана с открытым интерфейсом типа. Она становится применима только тогда, когда отдельные операции типа являются сами по себе завершенными; другими словами, когда уровень абстракции типа растет и выражается и инкапсулируется более точно (например, как у очереди производитель/потребитель по отношению к обычному контейнеру vector). Объединение примитивных операций для образования более крупных общих операций — этот подход требуется для того, чтобы обеспечить возможность простого вызова функции с большим внутренним содержанием. В ситуациях, когда комбинирование примитивов может быть произвольным и вы не можете определить разумный набор сценариев использования в виде одной именованной операции, имеются две альтернативы. Можно воспользоваться моделью функций обратного вызова (т.е. вызывающая функция должна вызвать одну функцию-член, передавая ей задание, которое следует выполнить, в виде команды или объекта-функции; см. рекомендации с 87 по 89). Второй метод состоит в некотором способе предоставления вызывающему коду возможности блокировки в открытом интерфейсе.

  • Проектирование, не требующее блокировок, включая неизменяемость (объекты, предназначенные только для чтения). Можно разработать типы, для которых блокировка окажется полностью ненужной (см. ссылки). Одним из распространенных примеров являются неизменяемые объекты, которые не требуют блокировки, поскольку они никогда не изменяются. Например, будучи создан, объект неизменяемого строкового типа больше не модифицируется, а все строковые операции приводят к созданию новых строк.

Заметим, что вызывающий код ничего не должен знать о деталях реализации ваших типов (см. рекомендацию 11). Если ваш тип внутренне использует какие-то методики разделения данных (например, копирование при записи), вы не должны нести ответственность за все возможные вопросы безопасности потоков, но обязаны обеспечить корректность работы вызывающего кода при обычной работе — т.е. тип должен быть безопасен в плане многопоточ-ности в той же мере, как если бы он не использовал методики совместного использования данных. Как упоминалось, все корректно написанные типы должны позволять работу с различными объектами в разных потоках без синхронизации.

В частности, если вы разрабатываете библиотеку, предназначенную для широкого использования, вы должны предусмотреть безопасность ваших объектов в многопоточных программах, как описано выше, но при этом без дополнительных накладных расходов при работе в однопо-точной программе. Например, если вы пишете библиотеку, содержащую тип, использующий копирование при записи, и вы должны обеспечить, как минимум, некоторую внутреннюю блокировку, то предпочтительно разработать ее так, чтобы в однопоточном варианте вашей библиотеки ее не было (обычно для этого используются директивы препроцессора #ifdef).

Если используется несколько блокировок, то избежать взаимоблокировки можно путем их запроса в одинаковом порядке (освобождение блокировок может выполняться в любом порядке). Одно из решений состоит в запросе блокировок в порядке возрастания адресов в памяти, что обеспечивает удобное, однозначное упорядочение в пределах приложения.

13. Ресурсы должны быть во владении объектов

Резюме

Не работайте вручную, если у вас есть мощные инструменты. Идиома C++ "выделение ресурса есть инициализация" (resource acquisition is initialization — RAII) представляет собой мощный инструмент для корректной работы с ресурсами. RAII позволяет компилятору автоматически обеспечить строгую гарантию того, что в других языках надо делать вручную. При выделении ресурса передайте его объекту-владельцу. Никогда не выделяйте несколько ресурсов в одной инструкции.

Обсуждение

Симметрия конструктор/деструктор, обеспечиваемая языком C++, воспроизводит симметрию, присущую парам функций захвата/освобождения ресурса, таким как fopen/fclose, lock/unlock и new/delete. Это делает стековые объекты (или объекты со счетчиком ссылок), в конструкторе которых происходит захват ресурса (а в деструкторе его освобождение), превосходным инструментом для автоматизации управления ресурсами.

Автоматизация легко реализуема, элегантна, недорога и по сути безопасна в плане ошибок. Если вы не будете ею пользоваться, то обречете себя на нетривиальную и кропотливую ручную работу по "спариванию" вызовов захвата и освобождения ресурсов, включающую отслеживание всех ветвлений и исключений. Это совершенно неприемлемый путь для C++, который предоставляет возможность автоматизации этой работы при помощи простой в использовании идиомы RAII

Когда вы имеете дело с ресурсом, который требует спаривания вызовов функций захвата/освобождения, инкапсулируйте этот ресурс в объект, который выполнит эту работу за вас и освободит ресурс в своем деструкторе. Например, вместо непосредственного вызова пары функций (не членов) OpenPort/ClosePort можно поступить иначе:

class Port {
public:
    Port( const string& destination );  // вызов openPort
    ~Port();                                // вызов ClosePort
    // порты обычно не  клонируются, так что запрещаем
    // копирование и присваивание
};

void DoSomething() {
    Port port1( "serverl:80" );
    //   ...
}   // Забыть  закрыть порт нельзя  - он будет закрыт
    // автоматически при выходе из области видимости

shared_ptr<Port> port2 = /*...*/;   // port2 будет закрыт
    // автоматически, когда будет уничтожен последний
    // ссылающийся на него объект shared_ptr

Вы можете также использовать библиотеки, которые реализуют соответствующий шаблон проектирования.

При реализации идиомы RAII следует особо тщательно подходить к вопросу о копирующем конструкторе и присваивании (см. рекомендацию 49): обычно генерируемые компилятором версии этих функций не подходят. Если копирование лишено смысла, копирующий конструктор и оператор присваивания можно явным образом запретить, делая их закрытыми членами и не определяя (см. рекомендацию 53). В противном случае копирующий конструктор дублирует ресурс или использует счетчик ссылок на него, и то же делает и оператор присваивания, при необходимости освободив ресурс, которым объект владел до присваивания. Классической ошибкой является освобождение старого ресурса до того, как успешно дублирован новый (см. рекомендацию 71).

Обеспечьте, чтобы все ресурсы принадлежали объектам. Предпочтительно хранить все динамически выделенные ресурсы посредством интеллектуальных, а не обычных, указателей. Кроме того, следует выполнять каждое явное выделение ресурса (например, new) в отдельной инструкции, которая тут же передает ресурс управляющему объекту (например, shared_ptr). В противном случае может возникнуть утечка ресурсов, связанная с тем, что порядок вычисления параметров функции не определен (см. рекомендацию 31). Например:

void Fun(shared_ptr sp1, shared_ptr sp2);
// ...
Fun(shared_ptr<Widget>(new Widget),
    shared_ptr<Widget>(new Widget));

Такой код небезопасен. Стандарт C++ предоставляет компилятору большую свободу действий по переупорядочению выражений, которые создают два аргумента функции. В частности, компилятор может чередовать выполнение этих двух выражений: сначала для обоих объектов может быть выполнено выделение памяти (при помощи оператора new), а уже затем будут вызваны два конструктора Widget. Такая последовательность действий может привести к утечке: если один из конструкторов сгенерирует исключение, то память для другого объекта никогда не будет освобождена.

Эта тонкая проблема имеет простое решение: следуйте приведенному выше совету и никогда не выделяйте в одной инструкции больше одного ресурса. Следует выполнять каждое явное выделение ресурса (например, new) в отдельной инструкции, которая тут же передает ресурс управляющему объекту (например, shared_ptr), например:

shared_ptr<Widget> sp1(new Widget), sp2(new Widget);
Fun(sp1, sp2);

См. также описание дополнительных преимуществ такого стиля в рекомендации 31.

Исключения

Можно чересчур увлечься интеллектуальными указателями. Обычные указатели вполне подходят для кода, в котором указываемый объект виден только в ограниченном объеме (например, внутри класса — типа указателя на узел дерева в классе Tree, использующийся для навигации по дереву).



 
 

Библиотека программиста. 2009.
Администратор: admin@programmer-lib.ru